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Outline of Lecture 13

1 Nonlinear regression functions (SW 8.1)
2 Polynomials (single regressor) (SW 8.2)
3 Logarithms (single regressor) (SW 8.2)
4 Interactions between variables (multiple regressors) (SW 8.3)
5 Application to California testscore data (SW 8.4)
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Nonlinear regression functions

Everything so far has been linear in the X’s.

The approximation that the regression function is linear might be
good for some variables, but not for others.

The multiple regression framework can be extended to handle
regression functions that are nonlinear in one or more of the X’s.
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The testscore —STR relation looks approximately linear. . .
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A Stata moment

use "CASchool.dta"
label var testscr "Test score"
label var str "Student-teacher ratio"
twoway (scatter testscr str, sort msize(small)) (lfit
testscr str,sort), xlabel(10(5)25) ylabel(600(20)720)
text(670 10 "Testscore_hat = 698.9 - 2.28 x str",
placement(e) size(vsmall)) ti(Figure 4.3 The Estimated
regression Line for the California Data, size(medium))

Testscore_hat = 698.9 - 2.28 x str
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Figure 4.3 The Estimated Regression Line for the California Data
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But the testscore — income relation looks .... nonlinear.
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Nonlinear regression functions

If the relation between Y and X is nonlinear then:

the effect on Y of a change in X depends on the value of X: the
marginal effect of X is not constant.
A linear regression would be misspecified as it assumes the wrong
functional form.
Because of this, the estimator of the effect on Y of X is biased in
general; it even isn’t right on average.

The solution to this is to estimate a regression function that is
nonlinear in X.
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The general nonlinear population regression function

The population regression function is

Y = f (X1,X2, . . . ,Xk ) + u

where f (·) is a possibly nonlinear function.
The linear model is a special case where

f (X1,X2, . . . ,Xk ) = β0 + β1X1 + . . .+ βkXk

In this course we assume the function f (·) is known.
A topic of current research is “nonparametric econometrics”which
seeks to estimate marginal effects without assuming a known
functional form f (·).
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Assumptions of the regression model

We make the following assumptions:

1 E (u|X1,X2, . . . ,Xk ) = 0 (same as LSA #1). It implies that f (·) is
the conditional expectation of Y given the X’s.

2 (X1i ,X2i , . . . ,Xki ,Yi ) are i.i.d. (same as LSA #2).
3 Big outliers are rare (same as LSA #3; the precise mathematical
statement depends on specific function f (·)).

4 No perfect multicollinearity (same idea as LSA #4; the precise
mathematical statement depends on specific function f (·)).
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Marginal effect in general regression model

The change in expected Y —∆EY− associated with a change in X1,
holding X2, . . . ,Xk constant is the difference between the value of the
population regression function before and after changing X1, holding
X2, . . . ,Xk constant .
That is,

∆Y = f (X1 + ∆X1,X2, . . . ,Xk )− f (X1,X2, . . . ,Xk )

This is very general as this “marginal” effect can depend on X1 (i.e.,
it varies with X1) and on other X ′s besides X1. This depends on the
choice of function f (·).

Recall that in the linear model, ∆EY /∆X1 = β1.

We will study specific formulations of the function f (X1,X2, . . . ,Xk ) .
For simplicity, we do this in the context of a single regressor model
but everything applies equally to the multiple regression model.
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Two complementary choices of nonlinear functional form

1 Polynomials in X
1 The population regression function is approximated by a quadratic,
cubic, or higher-degree polynomial.

2 Logarithmic transformations
1 Y and/or X is transformed by taking its (natural) logarithm. As we will
see this gives a “percentages” interpretation that makes sense in many
applications.
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Where are we?

1 Nonlinear regression functions (SW 8.1)
2 Polynomials (single regressor) (SW 8.2)
3 Logarithms (single regressor) (SW 8.2)
4 Interactions between variables (multiple regressors) (SW 8.3)
5 Application to California testscore data (SW 8.4)
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Polynomials in X

Approximate the population regression function by a polynomial:

Y = β0 + β1X + β2X
2 + . . .+ βrX

r + u

This is just the linear multiple regression model — except that the
regressors are powers of X!

Estimation, hypothesis testing, etc. proceeds as in the multiple
regression model using OLS.

The coeffi cients are diffi cult to interpret (more on this below), but the
regression function itself is interpretable.
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A quadratic and cubic example

Let income be the average income in the district (thousand dollars
per capita).

Quadratic specification:

Testscr = β0 + β1income + β2(income)
2 + u

Cubic specification:

Testscr = β0 + β1income + β2(income)
2 + β3(income)

3 + u
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Estimation of a quadratic specification in Stata

. rename avginc income  //reanme original variable

. g income2=income^2   //create square of income

. reg testscr income income2,r

Linear regression                               Number of obs     =        420
                                                F(2, 417)         =     428.52
                                                Prob > F          =     0.0000
                                                R-squared         =     0.5562
                                                Root MSE          =     12.724

                            Robust
     testscr       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

      income    3.850995   .2680941    14.36   0.000      3.32401    4.377979
     income2   -.0423085   .0047803    -8.85   0.000     -.051705   -.0329119
       _cons    607.3017   2.901754   209.29   0.000     601.5978    613.0056

Saul Lach () Applied Statistics and Econometrics October 2018 15 / 91

Testing the null hypothesis of linearity

Testing the null hypothesis of linearity, against the alternative that
the population regression is quadratic,

H0 : β2 = 0 H1 : β2 6= 0

The t-statistic on income2 is -8.85, so the hypothesis of linearity is
rejected against the quadratic alternative at the 1% significance level.
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Quadratic model fits better than linear

Plot predicted (fitted) values of quadratic and linear models

T̂estscr = 625.38+ 1.879income

T̂estscr = 607.3+ 3.851income − 0.042(income)2
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Stata commands

reg testscr income income2,r
predict testscr_q
reg testscr income,r
predict testscr_l
label var testscr_q "fitted line - quadratic"
label var testscr_l "fitted line - linear"
twoway (scatter testscr income, sort) (line testscr_l
income, sort lwidth(medthick) lpattern(longdash_dot)) (line
testscr_q income, sort lwidth(thick)), legend(on
size(small) position(12) ring(0))
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Marginal effects in nonlinear models

T̂estscr = β̂0 + β̂1income + β̂2(income)
2

Predicted change in testscore of a change in income equal to ∆inc :

∆T̂estscr =
[
β̂0 + β̂1 (income + ∆inc) + β̂2(income + ∆inc)2

]
−
[
β̂0 + β̂1income + β̂2(income)

2]
= β̂1∆inc + β̂2

[
(income + ∆inc)2 − (income)2

]
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Marginal effect in quadratic model

The effect of a unit change in income on test scores is

∆T̂estscr = β̂1 + β̂2
[
(income + 1)2 − (income)2

]
Two implications:

1 The β̂
′
s (or the β′s themselves) do not fully capture marginal

effects in a quadratic model (as they do in the linear model)!
2 The marginal effect of a change in income (X) depends on the level
of income (X).

3 In fact, these implications hold for all nonlinear models (not just
quadratic).
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Marginal effect in quadratic models

Given ∆inc = 1(1 thousand dollars),

∆T̂estscr = β̂1 + β̂2
[
(income + 1)2 − (income)2

]
= 3.851− 0.042

[
(income + 1)2 − (income)2

]
depends on the level of income.

We compute this at various levels of income

∆T̂estscr
from 5 to 6 3.4
from 25 to 26 1.7
from 45 to 46 0.03

The “effect”of a change in income is greater at low than high income
levels (perhaps, due to a declining marginal benefit of an increase in
school budgets?)
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Marginal effect in quadratic models

For infinitesimal changes in X we can just take the derivative (it is
much simpler),

Y = β0 + β1X + β2X
2 + u =⇒ dY

dX
= β1 + 2β2X

∆T̂estscr
at income = 5 3.851− 2× 0.042× 5 = 3. 431
at income = 25 3.851− 2× 0.042× 25 = 1.75
at income = 45 3.851− 2× 0.042× 45 = 0.071

Not a bad approximation. . . and much faster.
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Estimation of a cubic specification in Stata

The cubic term is statistically significant at the 5%, but not 1%, level.

.  g income3=income^3

.  reg testscr income income2 income3,r

Linear regression                               Number of obs     =        420
                                                F(3, 416)         =     270.18
                                                Prob > F          =     0.0000
                                                R-squared         =     0.5584
                                                Root MSE          =     12.707

                            Robust
     testscr       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

      income    5.018677   .7073504     7.10   0.000     3.628251    6.409104
     income2   -.0958052   .0289537    -3.31   0.001     -.152719   -.0388913
     income3    .0006855   .0003471     1.98   0.049     3.27e-06    .0013677
       _cons     600.079   5.102062   117.61   0.000     590.0499     610.108
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Testing the null hypothesis of linearity

Testing the null hypothesis of linearity, against the alternative that
the population regression is quadratic and/or cubic, that is, is a
polynomial of degree up to 3:

H0 : β2 = β3 = 0

H1 : at least one of β2 and β3 is nonzero

The null hypothesis is rejected at the 1% significance level.

.  test income2 income3   //execute test command after running regression

 ( 1)  income2 = 0
 ( 2)  income3 = 0

       F(  2,   416) =   37.69
            Prob > F =    0.0000
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Extension to multiple regression

If we have a multiple regression

Y = β0 + β1X1 + . . .+ βkXk + u

and we think there is a nonlinear relationship between Y and one of
the X ′s, say the last one Xk , we can use a polynomial in that variable
alone,

Y = β0+ β1X1+ . . .+ βkXk + βk+1X
2
k + βk+2X

3
k + . . . βk+r−1X

r
k +u

Estimation and hypotheses testing proceed as usual.
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Extension to multiple regression

.  reg testscr str el_pct income income2 income3

      Source        SS           df       MS      Number of obs   =       420
   F(5, 414)       =    217.61

       Model   110184.591         5  22036.9181   Prob > F        =    0.0000
    Residual   41925.0031       414  101.268124   R-squared       =    0.7244

   Adj R-squared   =    0.7210
       Total   152109.594       419  363.030056   Root MSE        =    10.063

     testscr       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

         str   -.2257894   .2727757    -0.83   0.408    -.7619875    .3104087
      el_pct   -.4645906   .0301539   -15.41   0.000    -.5238644   -.4053168
      income     1.59157   .7188919     2.21   0.027     .1784367    3.004704
     income2    .0235483   .0307113     0.77   0.444    -.0368213    .0839178
     income3   -.0006129    .000384    -1.60   0.111    -.0013678    .0001419
       _cons    638.9685   7.061529    90.49   0.000     625.0876    652.8494
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Summary: polynomial regression functions

Y = β0 + β1X + β2X
2 + . . .+ βrX

r + u

Estimation: by OLS after defining new regressors X 2, . . . ,X r .
Coeffi cients have complicated interpretations.

To interpret the estimated regression function plot predicted values as
functions of X and/or compute predicted ∆Y /∆X or dYdX at different
values of X .

Hypotheses concerning degree r can be tested by t- and F-tests on
the appropriate (blocks of) variable(s).

Choice of degree r : plot the data; t- and F-tests, check sensitivity of
estimated effects; use judgment.
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Where are we?

1 Nonlinear regression functions (SW 8.1)
2 Polynomials (single regressor) (SW 8.2)
3 Logarithms (single regressor) (SW 8.2)
4 Interactions between variables (multiple regressors) (SW 8.3)
5 Application to California testscore data (SW 8.4)
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Logarithmic functions of Y and/or X

ln(X) = the natural logarithm of X.

We only deal with natural logarithms and often write also log(X) to
mean ln(X) (so does Stata).

Logarithms permit modeling relations in “percentage” terms (like
elasticities), rather than linearly because changes in logs are
approximately equal to percentage changes.
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Changes in logs and percentage changes

For any variable z , the change in logs is

ln (z + ∆z)− ln(z) = ln
(
z + ∆z
z

)
= ln

(
1+

∆z
z

)
≈ ∆z

z
for small

∆z
z

Thus, 100× difference in the log of a variable z when it changes by
∆z is approximately equal to the percentage difference, 100∆z

z .
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Changes in logs and percentage changes

In calculus:
d ln z
dz

=
1
z
⇒ d ln z =

dz
z

And some numerical examples:

ln(1+ .01)− ln(1) = ln(1.01) = 0.009950 ≈ .01
1
= 0.01

ln(1+ .1)− ln(1) = ln(1.1) = 0.09531 ≈ .1
1
= 0.10

ln(1+ .5)− ln(1) = ln(1.5) = 0.40547 � .5
1
= 0.5

so the approximation works for small relative increments ∆z
z .
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Plotting difference in logs and percentage difference
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Three specifications using logs

Case Population regression function

I. linear-log Y = β0 + β1 ln(X ) + u
II. log-linear ln (Y ) = β0 + β1X + u
III. log-log ln (Y ) = β0 + β1 ln(X ) + u

The interpretation of the slope coeffi cient differs in each case.

The interpretation is found by applying the general “before and after”
rule: figure out the change in Y for a given change in X.

We use a single regressor for simplicity. Can extend to multiple
regressors either with or without logs.
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Logarithms permit non-linear relationship between Y and X

For example,

ln (Y ) = β0 + β1X + u ⇒ Y = eβ0+β1X+u

ln (Y ) = β0 + β1 lnX + u ⇒ Y = eβ0+β1 lnX+u

and, of course,
Y = β0 + β1 ln(X ) + u.

But these models are still considered linear regression models since
they just involve a transformation of the dependent and/or
independent variables.

For example, in case I (linear-log), the model is linear in lnX (which we
can just relabel with another name, say Z).
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I. Linear-log population regression function

Y = β0 + β1 ln(X ) + u

To interpret β1 we calculate:

∆Y ≡
After︷ ︸︸ ︷

E [Y |X = x + ∆x ]−
Before︷ ︸︸ ︷

E [Y |X = x ]
= β0 + β1 ln(x + ∆x)− [β0 + β1 ln(x)]

= β1 (ln(x + ∆x)− ln(x))

≈ β1
∆x
x
(for small ∆x |x)

A 1% increase in X
(∆x
x = 0.01

)
is associated with 0.01β1 change in

Y.

A 10% increase in X
(∆x
x = 0.1

)
is associated with 0.1β1 change in Y.

Or, differentiating, dY = β1
1
X dX .
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Example: testscores vs. log(income)

First define the new regressor: g lincome=ln(income)

The model is now linear in ln(income), so the linear-log model can
be estimated by OLS:

T̂estscr = 557.8
(3.8)

+ 36.42
(1.4)

ln(income)

A 1% increase in income is associated with an increase in test scores
of 0.36 points.

Standard errors, confidence intervals, R2 —all the usual tools of
regression apply here.

How does this compare to the cubic model?
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Cubic and linear-log models compared

In this sample, the linear-log and cubic specification are almost identical.
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Stata commands

rename avginc income
g income2=income^2 //create square of income
g income3=income^3
reg testscr income income2 income3,r
predict testscr_c
label var testscr_c "fitted line - cubic"
reg testscr lincome,r
predict testscr_linlog
label var testscr_linlog "fitted value linear-log"
twoway (scatter testscr income, sort) (line testscr_linlog
income, sort lwidth(medthick) lpattern(longdash_dot)) (line
testscr_c income, sort lwidth(thick)), legend(on
size(small) position(12) ring(0))
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II. Log-linear population regression function

lnY = β0 + β1X + u

To interpret β1 we calculate

∆ lnY = E [lnY |X = x + ∆x ]− E [lnY |X = x ]
= β0 + β1(x + ∆x)− [β0 + β1x ]

= β1∆x

But

∆ lnY ≈ ∆Y
Y
⇒ ∆Y

Y
≈ β1∆x

A unit increase in X is associated with a 100β1% change in Y.

Differentiating, 1Y dY = β1dX .
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Example: log (testscore) vs. income

After generating ln(testscore), and running the regression we get

̂log (Testscr) = 6.44
(0.0029)

+ 0.0028
(0.00018)

income

When (average per capita) income increases by $1,000 (∆income = 1),
testscore increase by 0.28 percent.
When (average per capita) income increases by $10,000 (∆income = 10),
testscore increase by 2.8 percent.

Saul Lach () Applied Statistics and Econometrics October 2018 40 / 91



III. Log-log population regression function

lnY = β0 + β1 ln (X ) + u

To interpret β1 we calculate

∆ lnY = E [lnY |X = x + ∆x ]− E [lnY |X = x ]
= β0 + β1 ln(x + ∆x)− [β0 + β1 ln x ]

= β1 (ln(x + ∆x)− ln(x))

⇒ ∆Y
Y
≈ β1

∆x
x
⇒ 100

∆Y
Y︸ ︷︷ ︸

% change in Y

≈ β1 100
∆x
x︸ ︷︷ ︸

% change in X

A 1% change in X
(∆x
x = 0.01

)
is associated with a β1 percent

change in Y .
In the log-log specification, β1 has the interpretation of an elasticity.

Differentiating, 1Y dY = β1
1
X dX =⇒ β1 =

1
Y dY
1
X dX

.
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Example: log(testscore) vs. log(income)

̂log (Testscr) = 6.336
(0.006)

+ 0.0554
(0.0021)

ln(income)

A 1% increase in income is associated with an increase of 0.0554% in
test scores.

A 10% increase in income is associated with an increase of 0.554% in
test scores.
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Comparing fitted values across models

Models having the same dependent variable can be easily compared.
The fitted values here are fitted values of log(testscr). The log-linear
model is a straight line in the (Y ,X ) plane.
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Comparing fitted values across models

But if we want to compare models that have log(Y ) and Y as
dependent variable we need to be careful.

Compute fitted values of Y for each model:

l̂n (Y ) = β̂0 + β̂1X and define Ŷ = e l̂n(Y ) = e β̂0+β̂1X

l̂n (Y ) = β̂0 + β̂1 lnX and define Ŷ = e l̂n(Y ) = e β̂0+β̂1 lnX

and, of course,
Ŷ = β̂0 + β̂1 lnX

for which nothing has to be specially computed as it is the predicted
value computed after the regress command.
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Comparing fitted values of the three nonlinear models
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Stata commands

g logtestscr=log(testscr)
reg logtestscr income,r
predict testscr_loglin
label var testscr_loglin "fitted value log-linear"
reg logtestscr lincome,r
predict testscr_loglog
label var testscr_loglog "fitted value log-log"
twoway (scatter logtestscr income, sort) (line
testscr_loglin income, sort lwidth(thick)) (line
testscr_loglog income, sort lpattern(dash) lwidth(thick)),
legend(on size(small) position(12) ring(0)subtitle(y axis:
log(testscr)))
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Summary: Logarithmic transformations

Three cases, differing in whether Y and/or X is transformed by taking
logarithms.

After creating the new variable(s) ln(Y) and/or ln(X), the regression
is linear in the new variables and the coeffi cients can be estimated by
OLS.

Hypothesis tests and confidence intervals are implemented and
interpreted as usual.

The choice of specification should be guided by judgment (which
interpretation makes the most sense in your application?), tests, and
plotting predicted values.
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Summary: Logarithmic transformations

The interpretation of β1 differs from case to case.

Model Change in X Change in Y In words

linear-log ∆X
X ∆Y 1

100 × β1 =
Change in Y

1 % change in X

log-linear ∆X ∆Y
Y 100× β1 =

% Change in Y
1 unit change in X

log-log ∆X
X

∆Y
Y β1 =

% Change in Y
1 % change in X

Saul Lach () Applied Statistics and Econometrics October 2018 48 / 91



Earning function estimation from Italian LFS

We estimated “earning functions”— regressions of wages on
education and other characteristics —using the level of wages as the
dependent variable.

The usual specification of an earning function differs in that:

we use logs of wages instead of wages.
we use a quadratic in age (or potential work experience).

What are the implications of these modifications on the interpretation
of the coeffi cient of education and of age?
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The “old”specification

.  reg retric educ etam  female Center South,robust

Linear regression                               Number of obs     =     26,127
                                                F(5, 26121)       =    1535.35
                                                Prob > F          =     0.0000
                                                R-squared         =     0.2647
                                                Root MSE          =      448.1

                            Robust
      retric       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

        educ    58.36051   1.081296    53.97   0.000     56.24111     60.4799
        etam    13.10358   .2559897    51.19   0.000     12.60183    13.60534
      female    -342.248   5.613383   -60.97   0.000    -353.2506   -331.2455
      Center    -95.4606   7.079332   -13.48   0.000    -109.3365   -81.58472
       South   -174.0507   6.833489   -25.47   0.000    -187.4447   -160.6566
       _cons    166.3771   19.17763     8.68   0.000     128.7879    203.9663
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The new specification

.  g lretric=log(retric)
(75,789 missing values generated)

.  g etam2=etam^2

.  reg lretric educ etam etam2 female Center South,robust

Linear regression                               Number of obs     =     26,127
                                                F(6, 26120)       =    1256.03
                                                Prob > F          =     0.0000
                                                R-squared         =     0.2395
                                                Root MSE          =     .39357

                            Robust
     lretric       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

        educ    .0425932   .0008517    50.01   0.000     .0409239    .0442626
        etam     .036764   .0017696    20.78   0.000     .0332956    .0402324
       etam2   -.0003106   .0000207   -15.04   0.000    -.0003511   -.0002701
      female   -.2958357   .0049976   -59.20   0.000    -.3056314   -.2860401
      Center   -.0866751   .0062467   -13.88   0.000     -.098919   -.0744313
       South   -.1500943   .0063547   -23.62   0.000    -.1625497   -.1376388
       _cons    5.725301   .0378177   151.39   0.000     5.651176    5.799426
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Rate of return to education

The coeffi cient of education in the new specification is the percentage
change in wages associated with a one year change in education.

It is a rate of return interpretation. In this sample, it is estimated to
be 4.3%.

Age (experience) has positive but diminishing (due to the negative
quadratic coeffi cient) effects on wages.
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Where are we?

1 Nonlinear regression functions (SW 8.1)
2 Polynomials (single regressor) (SW 8.2)
3 Logarithms (single regressor) (SW 8.2)
4 Interactions between variables (multiple regressors) (SW 8.3)

1 Interaction between two binary variables.
2 Interaction between a binary and a continuous variable.
3 Interaction between two continuous variables.

5 Application to California testscore data (SW 8.4)
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Interaction between regressors

Perhaps a class size reduction is more effective in some circumstances
than in others. . .

Perhaps smaller classes are more effective when there are many
English learners needing individual attention.

This means that, perhaps, ∆Testscore
∆STR might depend on el_pct (% of

English learners).

More generally,
∆Y
∆X1

might depend on X2.

How to model such “interactions”between X1 and X2?

We first consider binary X’s, then continuous X’s.
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Interaction between two binary variables

Y = β0 + β1D1 + β2D2 + u

D1,D2 are binary (dummy) variables.

β1 is the effect of changing D1 = 0 to D1 = 1. In this specification,
this effect doesn’t depend on the value of D2.

To allow the effect of changing D1 to depend on D2, we include the
“interaction term”

D1 ×D2
as a regressor ((D1 ×D2) represents the multiplication of D1 and D2):

Y = β0+ β1D1+ β2D2+ β3 (D1 ×D2)+u model with interaction

To run the regression we need to generate a new regressor (maybe
call it D1XD2) equal to this multiplication.
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Interpreting the coeffi cients

Y = β0 + β1D1 + β2D2 + β3 (D1 ×D2) + u
General rule is to compare Y “before and after” a change in D1,
holding D2 constant:

E (Y |D1 = 0,D2 = d2) = β0 + β2d2 (a)

E (Y |D1 = 1,D2 = d2) = β0 + β1 + β2d2 + β3d2 (b)

Subtract (a) from (b):

∆Y ≡ E (Y |D1 = 1,D2 = d2)− E (Y |D1 = 0,D2 = d2) = β1 + β3d2

The effect of D1 equals β1 when D2 = 0 and β1 + β3 when D2 = 1.
β3 is the increment to the effect of D1 on Y when D2 = 1.
The interaction term between the two variables allows for the
effect of one variable on Y to depend on the value of the other
variable.
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Example: testscores, STR, English learners

We define 2 dummy variables

HiSTR =
{
0 if STR<20
1 if STR ≥ 20 HiEL =

{
0 if el_pct<10
1 if el_pct ≥ 10

One way to do this in Stata is

gen HiSTR = (STR >= 20)

gen HiEL = (el_pct >= 10)

and the interaction term is just the multiplication of these two
dummies.
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Dummies and their interaction

. gen Histr=(str>=20)

. gen Hiel = (el_pct>=10)

. gen HistrXHiel=Histr*Hiel

. reg testscr Histr Hiel HistrXHiel ,r

Linear regression                               Number of obs     =        420
                                                F(3, 416)         =      60.20
                                                Prob > F          =     0.0000
                                                R-squared         =     0.2956
                                                Root MSE          =     16.049

                            Robust
     testscr       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Histr   -1.907842   1.932215    -0.99   0.324    -5.705964    1.890279
        Hiel   -18.16295   2.345952    -7.74   0.000    -22.77435   -13.55155
  HistrXHiel   -3.494335   3.121226    -1.12   0.264    -9.629677    2.641006
       _cons    664.1433   1.388089   478.46   0.000     661.4147    666.8718
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Interpretation

t̂estscr = 664.1
(1.4)

− 18.16
(2.3)

HiEL − 1.91
(1.9)

HiSTR − 3.49
(3.1)

(HiSTR ×HiEL)

“Effect”of HiSTR when HiEL = 0 is —1.9.

“Effect”of HiSTR when HiEL = 1 is —1.9 —3.5 = —5.4.

Class size reduction is estimated to have a stronger effect when the
percent of English learners is large.
The interaction isn’t statistically significant in this sample:
t = −3.49/3.1 = −1.12.
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On dummy regressors and group ("cell") means

t̂estscr = 664.1
(1.4)

− 18.16
(2.3)

HiEL − 1.91
(1.9)

HiSTR − 3.49
(3.1)

(HiSTR ×HiEL)

The predicted values for each combination of the dummies is equal to
the mean of testscore in the corresponding group (or “cell”, e.g.,
HiEL=0 and HiSTR=1).
Check it out! (differences due to rounding only)

. table Hiel Histr , c(mean testscr)

                 Histr       
     Hiel         0         1

        0  664.1433  662.2355
        1  645.9803  640.5782
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Interactions between continuous and binary variables

Y = β0 + β1D + β2X + u

where D is binary, X is continuous.

As specified above, the effect on Y of X (holding constant D) is β2,
which does not depend on D.

To allow the effect of X to depend on D, include the “interaction
term”D × X as a regressor:

Y = β0 + β1D + β2X + β3 (D × X ) + u
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Interpreting the coeffi cients

General rule is to compare Y “before and after” a change in X :

E (Y |D = d ,X = x) = β0 + β1d + β2x + β3 (d × x)
E (Y |D = d ,X = x + ∆x) = β0 + β1d + β2 (x + ∆x) + β3 (d × (x + ∆x))

Subtracting the top from the bottom equation gives:

∆Y ≡ E (Y |D = d ,X = x + ∆x)− E (Y |D = d ,X = x)

= β2∆x + β3d∆x ⇒ ∆Y
∆x

= β2 + β3d

The effect of X depends on D (what we wanted)
β3 is the increment to the effect of X on Y when D = 1.
The interaction between a binary and a continuous variable
allows for the (marginal) effect of the continuous variable to
vary with the group defined by the binary variable.
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Binary-continuous interactions: two regression lines

Y = β0 + β1D + β2X + β3 (D × X ) + u

One way to understand what this interaction does is to realize that it
allows for different regression lines for the two groups defined by the
dummy variable.

The population regression line when D = 0 (for observations with
Di = 0) is

Y = β0 + β2X + u

and when D = 1 (for observations with Di = 1) it is

Y = β0 + β1 + (β2 + β3)X + u

These are two regression lines with different slopes and intercepts.
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Binary-continuous interactions: two regression lines
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Example: interacting STR and HiEL

. gen strXHiel=str*Hiel

. reg testscr str Hiel strXHiel,r

Linear regression                               Number of obs     =        420
                                                F(3, 416)         =      63.67
                                                Prob > F          =     0.0000
                                                R-squared         =     0.3103
                                                Root MSE          =      15.88

                            Robust
     testscr       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

         str   -.9684601   .5891016    -1.64   0.101    -2.126447    .1895268
        Hiel    5.639141   19.51456     0.29   0.773    -32.72029    43.99857
    strXHiel   -1.276613   .9669194    -1.32   0.187     -3.17727    .6240436
       _cons    682.2458   11.86781    57.49   0.000     658.9175    705.5742
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Example: interacting STR and HiEL

t̂estscr = 682.2
(11.87)

− 0.97
(0.59)

STR + 5.6
(19.52)

HiEL− 1.28
(0.97)

(STR ×HiEL)

Two regression lines: one for each HiSTR group. When HiEL = 0,

t̂estscr = 682.2− 0.97STR

and when HiEL = 1,

t̂estscr = 682.2− 0.97STR + 5.6− 1.28STR
= 687.8− 2.25STR

Class size reduction is estimated to have a larger effect when the
percent of English learners is large.
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Testing hypotheses about the different regression lines

t̂estscr = 682.2
(11.87)

− 0.97
(0.59)

STR + 5.6
(19.52)

HiEL− 1.28
(0.97)

(STR ×HiEL)

There are various hypotheses of interest that can be tested:

1 Regressions lines have the same slope
2 Regressions lines have the same intercept
3 Regressions line are identical
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Hypothesis 1: The two regression lines have the same slope

t̂estscr = 682.2
(11.87)

− 0.97
(0.59)

STR + 5.6
(19.52)

HiEL− 1.28
(0.97)

(STR ×HiEL)

H0 : the coeffi cient on the interaction term STR ×HiEL is zero.
This implies no difference in slopes.

The t-stastistic is:

t =
−1.28
0.97

= −1.32⇒ do not reject H0

This hypothesis is very important since it tests that there is no
difference in the response to class size between the two groups of
school districts (with high and low % English learners).
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Hypothesis 2: The two regression lines have the same
intercept

t̂estscr = 682.2
(11.87)

− 0.97
(0.59)

STR + 5.6
(19.52)

HiEL− 1.28
(0.97)

(STR ×HiEL)

H0 : the coeffi cient on HiEL is zero.
This implies no difference in intercepts.

The t-statistics is,

t =
−5.6
19.52

= 0.29⇒ do not reject H0
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Hypothesis 3: The two regression lines are identical

t̂estscr = 682.2
(11.87)

− 0.97
(0.59)

STR + 5.6
(19.52)

HiEL− 1.28
(0.97)

(STR ×HiEL)

H0 : the coeffi cients on HiEL = 0 and on STR ×HiEL are both zero.
This is a joint hypothesis (of two coeffi cients).
H0 implies no differences in intercepts and slopes.

The F-test is

F (2, 416) = 89.94 Prob > F = 0.0000⇒ reject H0!!!

Note that we reject the joint hypothesis but do not reject the
individual hypotheses.

This “strange” result can happen when there is high (but not
perfect!) multicollinearity: i. e., high correlation between HiEL and
STR ×HiEL (0.99 in our case).

Saul Lach () Applied Statistics and Econometrics October 2018 70 / 91



Interactions between two continuous variables

Y = β0 + β1X1 + β2X2 + u

where X1 and X2 are continuous.

As specified above, the effect on Y of X1 is β1, which does not
depend on X2.

And vice-versa: the effect of X2 is β2, which does not depend on X1.

To allow the effect of X1 to depend on X2, we include the
“interaction term”X1 × X2 as a regressor:

Y = β0 + β1X1 + β2X2 + β3 (X1 × X2) + u
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Interpreting the coeffi cients

General rule is to compare Y “before and after” a change in, say, X1 :

E (Y |X1 = x1,X2 = x2) = β0 + β1x1 + β2x2 + β3 (x1 × x2)
E (Y |X1 = x1 + ∆x1,X2 = x2) = β0 + β1 (x1 + ∆x1) + β2x2

+β3 ((x1 + ∆x1)× x2)

Subtracting the first from the second equation gives:

∆Y ≡ E (Y |X1 = x1 + ∆x1,X2 = x2)− E (Y |X1 = x1,X2 = x2)

= β1∆x1 + β3x2∆x1 ⇒
∆Y
∆x1

= β1 + β3x2

The effect of X1 depends on X2 (what we wanted).

β3 is the increment to the effect of X1 on Y from a unit change in X2.
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Example: interacting STR and EL_pct

. gen strXel_pct=str*el_pct

. reg testscr str el_pct strXel_pct,r

Linear regression                               Number of obs     =        420
                                                F(3, 416)         =     155.05
                                                Prob > F          =     0.0000
                                                R-squared         =     0.4264
                                                Root MSE          =     14.482

                            Robust
     testscr       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

         str   -1.117018   .5875135    -1.90   0.058    -2.271884    .0378468
      el_pct   -.6729116   .3741231    -1.80   0.073    -1.408319    .0624958
  strXel_pct    .0011618   .0185357     0.06   0.950    -.0352736    .0375971
       _cons    686.3385   11.75935    58.37   0.000     663.2234    709.4537
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Example: interacting STR and HiEL

t̂estscr = 686.3
(11.8)

− 1.12
(0.59)

STR − 0.67
(0.37)

PctEL+ 0.0012
(0.019)

(STR × El_pct),

The estimated effect of class size reduction is nonlinear because the
size of the effect itself depends on El_pct,

∆testscore
∆str

= −1.12+ 0.0012El_pct

El_pct ∆testscore
∆str

0 −1.12+ 0.0012× 0 = −1.12
10% −1.12+ 0.0012× 10 = −1. 108
11% −1.12+ 0.0012× 11 = −1. 1068
50% −1.12+ 0.0012× 50 = −1. 06

Increasing El_pct from 10% to 11% changes the marginal effect of STR
by −1. 1068− (−1. 108) = 0.0012 as expected!
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Testing hypotheses

t̂estscr = 686.3
(11.8)

− 1.12
(0.59)

STR − 0.67
(0.37)

PctEL+ 0.0012
(0.019)

(STR × El_pct),

Does population coeffi cient on STR × El_pct = 0?
t = 0.0012/0.019 = .06 ⇒ do not reject null at 5% level.

Does population coeffi cient on STR = 0?

t = −1.12/0.59 = −1.90 ⇒ do not reject null at 5% level

Do the coeffi cients on both STR and STR × El_pct = 0?

F (2, 416) = 3.89 Prob > F = 0.0212⇒ reject null at 5% level !!

As before, high but imperfect multicollinearity between STR and
STR × El_pct (0.25 in this sample) can lead to this “non-intuitive”result.
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Where are we?

1 Nonlinear regression functions (SW 8.1)
2 Polynomials (single regressor) (SW 8.2)
3 Logarithms (single regressor) (SW 8.2)
4 Interactions between variables (multiple regressors) (SW 8.3)
5 Application to California testscore data (SW 8.4)
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Application : Nonlinear Effects on Test Scores of the
Student-Teacher Ratio

Focus on two questions:

1 Does a reduction from, say, 25 to 20 have same effect as a reduction
from, say, 20 to 15? More generally, are there nonlinear effects of
class size reduction on test scores?

2 Are small classes more effective when there are many English learners?
More generally, are there interactions between EL_pct and STR?
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Strategy for answering Question #1 (different effect of
STR at different STR levels?)

Estimate linear and nonlinear functions of STR, holding constant
relevant demographic variables:

% of English learner (EL_pct)
Income (entered in logs because of previous work — recall the linear-log
model).
% on free/subsidized lunch (mean_pct).
Expenditures per pupil are not included in the regression so as to allow
for increases in expenditures when decreasing STR.

See whether adding the nonlinear terms makes an “economically
important”quantitative difference.

Test for whether the nonlinear terms are significant.
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Regression results for question 1

Nonlinear regression models

(1) (2) (3) (4)

reg1 reg2 reg3 reg4

VARIABLES Test scores Test scores Test scores Test scores

Student-Teacher Ratio (STR) -1.00*** -0.73*** 65.3** 64.3***

(0.27) (0.26) (25.3) (24.9)

STR^2 -3.47*** -3.42***

(1.27) (1.25)

STR^3 0.060*** 0.059***

(0.021) (0.021)

% English learners -0.12*** -0.18*** -0.17***

(0.033) (0.034) (0.034)

Binary for %English learners >= 10%) -5.47***

(1.03)

% Eligible for subsidized lunch -0.55*** -0.40*** -0.40*** -0.42***

(0.024) (0.033) (0.033) (0.029)

Average district income (in logs) 11.6*** 11.5*** 11.7***

(1.82) (1.81) (1.77)

Constant 700*** 659*** 245 252

(5.57) (8.64) (166) (164)

Observations 420 420 420 420

R-squared 0.775 0.796 0.801 0.801

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1
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Stata commands

g str_sq=str^2
g str_cu=str^3
gen Hiel = (el_pct>=10)
g lincome=log(avginc)
label var el_pct "% English learners"
label var meal_pct "% Eligible for subsidized lunch"
label var lincome "Average district income (in logs)"
label var testscr "Test scores"
label var str "STR"
label var str_sq "STR^2"
label var str_cu "STR^3"
label var Hiel "Binary for %English learners >= 10%)"
label var str "Student-Teacher Ratio (STR)"
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Stata commands

/////QUESTION 1
reg testscr str el_pct meal_pct,r
estimate store reg1
reg testscr str el_pct meal_pct lincome,r //adding income
estimate store reg2
reg testscr str str_sq str_cu el_pct meal_pct lincome,r
estimate store reg3
test str_sq str_cu
reg testscr str str_sq str_cu Hiel meal_pct lincome,r //dummy for %
english learners
estimate store reg4
test str_sq str_cu
outreg2 [reg1 reg2 reg3 reg4] using table1.xls, auto(2) sortvar(str str_sq
str_cu el_pct Hiel meal_pct lincome) label replace see
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Testing significance of nonlinear terms

F-statistics and p-values on joint hypotheses

model H0 : F p-value
reg 3 STR2 = STR3 = 0 5.96 0.0028
reg 4 STR2 = STR3 = 0 6.17 0.0023

Nonlinear terms are significantly different from zero.

But do they matter economically?
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Economic significance of nonlinear terms

After taking economic factors and nonlinearities into account, what is
the estimated effect on test scores of reducing the student—teacher
ratio by one student per teacher?
Strong “diminishing returns”: Cutting STR has a greater effect at
lower student-teacher ratios.
Not much difference in marginal effects between cols 3 and 4.
But big difference with linear specifications (cols 1 and 2).

Model STR
formula value

linear (col. 2) all  - 0.73x(-1) 0.73

nonlinear (col.3) 20 65.3×(-1)-3.47×(19²-20²)+0.060×(19³-20³) 1.57
nonlinear (col.3) 22 65.3×(-1)-3.47×(21²-22²)+0.060×(21³-22³) 0.69

nonlinear (col.4) 20 64.3x(-1)-3.42×(19²-20²)+0.059×(19³-20³) 1.761
nonlinear (col.4) 22 64.3x(-1)-3.42×(21²-22²)+0.059×(21³-22³) 0.927

Effect of reducing STR by 1 student
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Strategy for answering Question #2 (differential effect of
changing STR by % English learners)

Question 2: Are smaller classes more effective when there are many
English learners? More generally, are there interactions between
EL_pct and STR?

Estimate linear and nonlinear functions of STR, interacted with %
English learners.

If the specification is nonlinear (with STR, STR2, STR3), then you
need to add interactions with all the nonlinear terms.
We will use binary-continuous interactions by adding HiEL× STR,
HiEL× STR2 and HiEL× STR3.
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Regression results for question 2

Nonlinear regression models

(1) (2) (3) (4)

reg1 reg2 reg3 reg4

VARIABLES Test scores Test scores Test scores Test scores

Student-Teacher Ratio (STR) -0.734*** -0.772*** 64.34*** 83.70***

(0.257) (0.256) (24.86) (28.50)

STR^2 -3.424*** -4.381***

(1.250) (1.441)

STR^3 0.0593*** 0.0749***

(0.0208) (0.0240)

% English learners -0.176***

(0.0337)

Binary for %English learners >= 10% -5.791*** -5.474*** 816.1**

(1.027) (1.034) (327.7)

HiELxSTR -123.3**

(50.21)

HiELxSTR^2 6.121**

(2.542)

HiELxSTR^3 -0.101**

(0.0425)

% Eligible for subsidized lunch -0.398*** -0.417*** -0.420*** -0.418***

(0.0332) (0.0283) (0.0285) (0.0287)

Average district income (in logs) 11.57*** 11.82*** 11.75*** 11.80***

(1.819) (1.775) (1.771) (1.778)

Constant 658.6*** 659.4*** 252.0 122.3

(8.642) (8.421) (163.6) (185.5)

Observations 420 420 420 420

R-squared 0.796 0.797 0.801 0.803

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1
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Tests of hypotheses

F-statistics and p-values on joint hypotheses for model 4

H0 : F p-value
HiEL× STR = HiEL× STRSTR2= HiEL× STRSTR3= 0 2.69 0.046
All coeffi cients involving STR (6 coeffs.) 4.96 0.0001
STR2 = STR3 = 0 5.81 0.0033

Interactions of STR with HiEl are significantly different from zero at
the 5% (but not 1%) significance level.

But do they matter economically?
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Economic significance of interaction terms

Use model 4 to compute change in expected testscore when STR is
reduced by one student at STR=20 for schools with a high
(≥ 10%)% of English learners (HiEL = 1) and for schools with a low
percentage (HiEL = 0).
The marginal effect of STR is not very different between the two
groups of schools (1.7 and 1.56).

Model STR

formula value

Hiel=0 20 83.7×(-1) - 4.381 × (19²-20²) + 0.0749 × (19³-20³) 1.6981

Hiel=1
20

1.6981  (effect when Hiel=0) - 123.3 × (-1) + 6.12 × 

(19²-20²) - 0.101 × (19³-20³) 1.5591

Effect of reducing STR by 1 student
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Two regressions: low and high % of English learners
(model 4)
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Summary of the empirical application

The empirical analysis tried to provide answers to the following
questions:

Does the effect on test scores of reducing STR depends on the value
of STR, after controlling for the observables?

After controlling for economic background, there is evidence of a
nonlinear effect on test scores of the student—teacher ratio. This effect
is statistically significant at the 1% level (the coeffi cients on STR2 and
STR2 are always significant at the 1% level).

Does the effect on test scores of reducing STR depends on the % of
English learners, after controlling for the observables?

After controlling for economic background, whether there are many or
few English learners in the district does not have a substantial influence
on the effect on final test scores of a change in the student—teacher
ratio. Although statistically significant in the nonlinear specifications,
the effect is minimal in the region of STR comprising most of the data.
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Summary of the empirical application

After taking economic factors and nonlinearities into account, what is
the estimated effect on test scores of reducing the student—teacher
ratio by one student per teacher?

In the linear specification, this effect does not depend on the
student—teacher ratio itself, and the estimated effect of this reduction
is to improve test scores by 0.73 points.
In the nonlinear specifications, this effect depends on the value of the
student—teacher ratio. If the district currently has a STR of 20, then
cutting it to 19 has an estimated effect, based on regression (3) in the
first table, of improving test scores by 1.57 points, while based on
regression (4) the estimate is 1.76 points. If the district currently has a
STR student—teacher ratio of 22, then cutting it to 21 has sharply
more modest effect: 0.69 and 0.93 points, respectively. The estimates
from the nonlinear specifications suggest that cutting the
student—teacher ratio has a greater effect if this ratio is already small.
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Summary: Nonlinear Regression Functions

Using functions of the independent variables such as ln(X ) or
X1 × X2, allows recasting a large family of nonlinear regression
functions as multiple regression.

Estimation and inference proceeds in the same way as in the linear
multiple regression model.

Interpretation of the coeffi cients is model-specific, but the general
rule is to compute the change in Y “before and after” a change in X.

Many nonlinear specifications are possible, so you must use judgment:

What nonlinear effect you want to analyze?
What makes sense in your application?
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