Applied Statistics and Econometrics
 Lecture 13 Nonlinearities

Saul Lach

October 2018

Outline of Lecture 13

(1) Nonlinear regression functions (SW 8.1)
(2) Polynomials (single regressor) (SW 8.2)
(3) Logarithms (single regressor) (SW 8.2)
(9) Interactions between variables (multiple regressors) (SW 8.3)
(3) Application to California testscore data (SW 8.4)

Nonlinear regression functions

- Everything so far has been linear in the X's.
- The approximation that the regression function is linear might be good for some variables, but not for others.
- The multiple regression framework can be extended to handle regression functions that are nonlinear in one or more of the X's.

The testscore - STR relation looks approximately linear.

FIGURE 4.3 The Estimated Regression Line for the California Data

A Stata moment

use "CASchool.dta"
label var testscr "Test score"
label var str "Student-teacher ratio"
twoway (scatter testscr str, sort msize(small)) (lfit testscr str,sort), xlabel(10(5)25) ylabel(600(20)720) text (670 10 "Testscore_hat = 698.9-2.28 x str", placement(e) size(vsmall)) ti(Figure 4.3 The Estimated regression Line for the California Data, size(medium))

But the testscore - income relation looks nonlinear.

FIGURE 6.2 Scatterplot of Test Score vs. District Income with a Linear OLS Regression Function
There is a positive correlation between test scores and district income (correlation $=0.71$), but the linear OLS regression line does not adequately describe the relationship between these variables.

Nonlinear regression functions

- If the relation between Y and X is nonlinear then:
- the effect on Y of a change in X depends on the value of X : the marginal effect of X is not constant.
- A linear regression would be misspecified as it assumes the wrong functional form.
- Because of this, the estimator of the effect on Y of X is biased in general; it even isn't right on average.
- The solution to this is to estimate a regression function that is nonlinear in X.

The general nonlinear population regression function

- The population regression function is

$$
Y=f\left(X_{1}, X_{2}, \ldots, X_{k}\right)+u
$$

where $f(\cdot)$ is a possibly nonlinear function.

- The linear model is a special case where

$$
f\left(X_{1}, X_{2}, \ldots, X_{k}\right)=\beta_{0}+\beta_{1} X_{1}+\ldots+\beta_{k} X_{k}
$$

- In this course we assume the function $f(\cdot)$ is known.
- A topic of current research is "nonparametric econometrics" which seeks to estimate marginal effects without assuming a known functional form $f(\cdot)$.

Assumptions of the regression model

- We make the following assumptions:
(1) $E\left(u \mid X_{1}, X_{2}, \ldots, X_{k}\right)=0$ (same as LSA \#1). It implies that $f(\cdot)$ is the conditional expectation of Y given the X 's.
(2) $\left(X_{1 i}, X_{2 i}, \ldots, X_{k i}, Y_{i}\right)$ are i.i.d. (same as LSA \#2).
(3) Big outliers are rare (same as LSA \#3; the precise mathematical statement depends on specific function $f(\cdot)$).
(3) No perfect multicollinearity (same idea as LSA \#4; the precise mathematical statement depends on specific function $f(\cdot)$).

Marginal effect in general regression model

- The change in expected $Y-\Delta E Y$ - associated with a change in X_{1}, holding X_{2}, \ldots, X_{k} constant is the difference between the value of the population regression function before and after changing X_{1}, holding X_{2}, \ldots, X_{k} constant .
- That is,

$$
\Delta Y=f\left(X_{1}+\Delta X_{1}, X_{2}, \ldots, X_{k}\right)-f\left(X_{1}, X_{2}, \ldots, X_{k}\right)
$$

- This is very general as this "marginal" effect can depend on X_{1} (i.e., it varies with X_{1}) and on other $X^{\prime} s$ besides X_{1}. This depends on the choice of function $f(\cdot)$.
- Recall that in the linear model, $\Delta E Y / \Delta X_{1}=\beta_{1}$.
- We will study specific formulations of the function $f\left(X_{1}, X_{2}, \ldots, X_{k}\right)$.
- For simplicity, we do this in the context of a single regressor model but everything applies equally to the multiple regression model.

Two complementary choices of nonlinear functional form

(1) Polynomials in X

(1) The population regression function is approximated by a quadratic, cubic, or higher-degree polynomial.

(2) Logarithmic transformations

(1) Y and/or X is transformed by taking its (natural) logarithm. As we will see this gives a "percentages" interpretation that makes sense in many applications.

Where are we?

(1) Nonlinear regression functions (SW 8.1)
(2) Polynomials (single regressor) (SW 8.2)
(3) Logarithms (single regressor) (SW 8.2)
(4) Interactions between variables (multiple regressors) (SW 8.3)
(6) Application to California testscore data (SW 8.4)

Polynomials in X

- Approximate the population regression function by a polynomial:

$$
Y=\beta_{0}+\beta_{1} X+\beta_{2} X^{2}+\ldots+\beta_{r} X^{r}+u
$$

- This is just the linear multiple regression model - except that the regressors are powers of X !
- Estimation, hypothesis testing, etc. proceeds as in the multiple regression model using OLS.
- The coefficients are difficult to interpret (more on this below), but the regression function itself is interpretable.

A quadratic and cubic example

- Let income be the average income in the district (thousand dollars per capita).
- Quadratic specification:

$$
\text { Testscr }=\beta_{0}+\beta_{1} \text { income }+\beta_{2}(\text { income })^{2}+u
$$

- Cubic specification:

$$
\text { Testscr }=\beta_{0}+\beta_{1} \text { income }+\beta_{2}(\text { income })^{2}+\beta_{3}(\text { income })^{3}+u
$$

Estimation of a quadratic specification in Stata

```
. rename avginc income //reanme original variable
. g income2=income^2 //create square of income
. reg testscr income income2,r
```

Linear regression Number of obs
$\begin{array}{llr}\text { Number of obs } & = & \mathbf{4 2 0} \\ \mathrm{F}(2,417) & = & \mathbf{4 2 8 . 5 2}\end{array}$
$\begin{array}{lll}\mathrm{F}(2,417) & = & \mathbf{4 2 8 . 5 2} \\ \text { Prob }>\mathrm{F} & = & 0.0000\end{array}$
$\begin{array}{lll}\text { Prob } & = & 0.0000 \\ \text { R-squared } & = & 0.5562\end{array}$
Root MSE $=12.724$

	Robust						
testscr	Coef.	Std. Err.	t	P>\|t		[95\% Conf. Interval]	
income	3.850995	.2680941	14.36	0.000	3.32401	4.377979	
income2	-.0423085	.0047803	-8.85	0.000	-.051705	-.0329119	
_cons	607.3017	2.901754	209.29	0.000	601.5978	613.0056	

Testing the null hypothesis of linearity

- Testing the null hypothesis of linearity, against the alternative that the population regression is quadratic,

$$
H_{0}: \beta_{2}=0 \quad H_{1}: \beta_{2} \neq 0
$$

- The t-statistic on income2 is -8.85 , so the hypothesis of linearity is rejected against the quadratic alternative at the 1% significance level.

Quadratic model fits better than linear

Plot predicted (fitted) values of quadratic and linear models

$$
\begin{aligned}
& \widehat{\text { Testscr }}=625.38+1.879 \text { income } \\
& \widehat{\text { Testscr }}=607.3+3.851 \text { income }-0.042(\text { income })^{2}
\end{aligned}
$$

Stata commands

reg testscr income income2,r predict testscr_q
reg testscr income,r predict testscr_l
label var testscr_q "fitted line - quadratic"
label var testscr_l "fitted line - linear"
twoway (scatter testscr income, sort) (line testscr_l
income, sort lwidth(medthick) lpattern(longdash_dot)) (line
testscr_q income, sort lwidth(thick)), legend(on size(small) position(12) ring(0))

Marginal effects in nonlinear models

$$
\widehat{\text { Testscr }}=\hat{\beta}_{0}+\hat{\beta}_{1} \text { income }+\hat{\beta}_{2}(\text { income })^{2}
$$

- Predicted change in testscore of a change in income equal to $\Delta i n c$:

$$
\begin{aligned}
\Delta \widehat{\text { Testscr }}= & {\left[\hat{\beta}_{0}+\hat{\beta}_{1}(\text { income }+\Delta \text { inc })+\hat{\beta}_{2}(\text { income }+\Delta i n c)^{2}\right] } \\
& -\left[\hat{\beta}_{0}+\hat{\beta}_{1} \text { income }+\hat{\beta}_{2}(\text { income })^{2}\right] \\
= & \hat{\beta}_{1} \Delta \text { inc }+\hat{\beta}_{2}\left[(\text { income }+\Delta \text { inc })^{2}-(\text { income })^{2}\right]
\end{aligned}
$$

Marginal effect in quadratic model

- The effect of a unit change in income on test scores is

$$
\Delta \widehat{\text { Testscr }}=\hat{\beta}_{1}+\hat{\beta}_{2}\left[(\text { income }+1)^{2}-(\text { income })^{2}\right]
$$

- Two implications:
(1) The $\hat{\beta}^{\prime} s$ (or the $\beta^{\prime} s$ themselves) do not fully capture marginal effects in a quadratic model (as they do in the linear model)!
(2) The marginal effect of a change in income (X) depends on the level of income (X).
(3) In fact, these implications hold for all nonlinear models (not just quadratic).

Marginal effect in quadratic models

- Given $\Delta i n c=1$ (1 thousand dollars),

$$
\begin{aligned}
\Delta \widehat{\text { Testscr }} & =\hat{\beta}_{1}+\hat{\beta}_{2}\left[(\text { income }+1)^{2}-(\text { income })^{2}\right] \\
& =3.851-0.042\left[(\text { income }+1)^{2}-(\text { income })^{2}\right]
\end{aligned}
$$

depends on the level of income.

- We compute this at various levels of income

$\Delta \widehat{\text { Testscr }}$	
from 5 to 6	3.4
from 25 to 26	1.7
from 45 to 46	0.03

- The "effect" of a change in income is greater at low than high income levels (perhaps, due to a declining marginal benefit of an increase in school budgets?)

Marginal effect in quadratic models

- For infinitesimal changes in X we can just take the derivative (it is much simpler),

$$
Y=\beta_{0}+\beta_{1} X+\beta_{2} X^{2}+u \Longrightarrow \frac{d Y}{d X}=\beta_{1}+2 \beta_{2} X
$$

	$\Delta \widehat{\text { Testscr }}$
at income $=5$	$3.851-2 \times 0.042 \times 5=3.431$
at income $=25$	$3.851-2 \times 0.042 \times 25=1.75$
at income $=45$	$3.851-2 \times 0.042 \times 45=0.071$

- Not a bad approximation... and much faster.

Estimation of a cubic specification in Stata

The cubic term is statistically significant at the 5%, but not 1%, level.

Testing the null hypothesis of linearity

- Testing the null hypothesis of linearity, against the alternative that the population regression is quadratic and/or cubic, that is, is a polynomial of degree up to 3:

$$
\begin{aligned}
& H_{0}: \beta_{2}=\beta_{3}=0 \\
& H_{1}: \quad \text { at least one of } \beta_{2} \text { and } \beta_{3} \text { is nonzero }
\end{aligned}
$$

- The null hypothesis is rejected at the 1% significance level.

```
test income2 income3 //execute test command after running regression
(1) income2 =0
    F( 2, 416) = 年 37.69
```


Extension to multiple regression

- If we have a multiple regression

$$
Y=\beta_{0}+\beta_{1} X_{1}+\ldots+\beta_{k} X_{k}+u
$$

and we think there is a nonlinear relationship between Y and one of the $X^{\prime} s$, say the last one X_{k}, we can use a polynomial in that variable alone,

$$
Y=\beta_{0}+\beta_{1} X_{1}+\ldots+\beta_{k} X_{k}+\beta_{k+1} X_{k}^{2}+\beta_{k+2} X_{k}^{3}+\ldots \beta_{k+r-1} X_{k}^{r}+u
$$

- Estimation and hypotheses testing proceed as usual.

Extension to multiple regression

. reg testscr str el_pct income income2 income3

Source	SS	$d f$	$M S$
Model	$\mathbf{1 1 0 1 8 4 . 5 9 1}$	5	22036.9181
Residual	$\mathbf{4 1 9 2 5 . 0 0 3 1}$	$\mathbf{4 1 4}$	$\mathbf{1 0 1 . 2 6 8 1 2 4}$
Total	$\mathbf{1 5 2 1 0 9 . 5 9 4}$	$\mathbf{4 1 9}$	$\mathbf{3 6 3 . 0 3 0 0 5 6}$

Number of obs	$=$	$\mathbf{4 2 0}$
F (5, 414)	$=$	$\mathbf{2 1 7 . 6 1}$
Prob > F	$=$	0.0000
R-squared	$=$	0.7244
Adj R-squared	$=$	0.7210
Root MSE	$=$	$\mathbf{1 0 . 0 6 3}$

| testscr | Coef. | Std. Err. | t | P>\|t| | [95\% Conf. Interval] | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| str | -.2257894 | .2727757 | -0.83 | 0.408 | -.7619875 | .3104087 |
| el_pct | -.4645906 | .0301539 | -15.41 | 0.000 | -.5238644 | -.4053168 |
| income | 1.59157 | .7188919 | 2.21 | 0.027 | .1784367 | 3.004704 |
| income2 | .0235483 | .0307113 | 0.77 | 0.444 | -.0368213 | .0839178 |
| income3 | -.0006129 | .000384 | -1.60 | 0.111 | -.0013678 | .0001419 |
| _cons | 638.9685 | 7.061529 | 90.49 | 0.000 | 625.0876 | 652.8494 |

Summary: polynomial regression functions

$$
Y=\beta_{0}+\beta_{1} X+\beta_{2} X^{2}+\ldots+\beta_{r} X^{r}+u
$$

- Estimation: by OLS after defining new regressors X^{2}, \ldots, X^{r}.
- Coefficients have complicated interpretations.
- To interpret the estimated regression function plot predicted values as functions of X and/or compute predicted $\Delta Y / \Delta X$ or $\frac{d Y}{d X}$ at different values of X.
- Hypotheses concerning degree r can be tested by t - and F-tests on the appropriate (blocks of) variable(s).
- Choice of degree r : plot the data; t - and F-tests, check sensitivity of estimated effects; use judgment.

Where are we?

(1) Nonlinear regression functions (SW 8.1)
(2) Polynomials (single regressor) (SW 8.2)
(3) Logarithms (single regressor) (SW 8.2)
(9) Interactions between variables (multiple regressors) (SW 8.3)
(3) Application to California testscore data (SW 8.4)

Logarithmic functions of Y and/or X

- $\ln (X)=$ the natural logarithm of X.
- We only deal with natural logarithms and often write also $\log (X)$ to mean $\ln (X)$ (so does Stata).
- Logarithms permit modeling relations in "percentage" terms (like elasticities), rather than linearly because changes in logs are approximately equal to percentage changes.

Changes in logs and percentage changes

- For any variable z, the change in logs is

$$
\begin{aligned}
\ln (z+\Delta z)-\ln (z) & =\ln \left(\frac{z+\Delta z}{z}\right) \\
& =\ln \left(1+\frac{\Delta z}{z}\right) \\
& \approx \frac{\Delta z}{z} \text { for small } \frac{\Delta z}{z}
\end{aligned}
$$

- Thus, $100 \times$ difference in the \log of a variable z when it changes by Δz is approximately equal to the percentage difference, $100 \frac{\Delta z}{z}$.

Changes in logs and percentage changes

- In calculus:

$$
\frac{d \ln z}{d z}=\frac{1}{z} \Rightarrow d \ln z=\frac{d z}{z}
$$

- And some numerical examples:

$$
\begin{aligned}
\ln (1+.01)-\ln (1) & =\ln (1.01)=0.009950 \approx \frac{.01}{1}=0.01 \\
\ln (1+.1)-\ln (1) & =\ln (1.1)=0.09531 \approx \frac{.1}{1}=0.10 \\
\ln (1+.5)-\ln (1) & =\ln (1.5)=0.40547 \not \equiv \frac{.5}{1}=0.5
\end{aligned}
$$

so the approximation works for small relative increments $\frac{\Delta z}{z}$.

Plotting difference in logs and percentage difference

Difference in logs approximates percentage difference $z=1$

Three specifications using logs

Case	Population regression function
I. linear-log	$Y=\beta_{0}+\beta_{1} \ln (X)+u$
II. log-linear	$\ln (Y)=\beta_{0}+\beta_{1} X+u$
III. log-log	$\ln (Y)=\beta_{0}+\beta_{1} \ln (X)+u$

- The interpretation of the slope coefficient differs in each case.
- The interpretation is found by applying the general "before and after" rule: figure out the change in Y for a given change in X .
- We use a single regressor for simplicity. Can extend to multiple regressors either with or without logs.

Logarithms permit non-linear relationship between Y and X

- For example,

$$
\begin{aligned}
& \ln (Y)=\beta_{0}+\beta_{1} X+u \Rightarrow Y=e^{\beta_{0}+\beta_{1} X+u} \\
& \ln (Y)=\beta_{0}+\beta_{1} \ln X+u \Rightarrow Y=e^{\beta_{0}+\beta_{1} \ln X+u}
\end{aligned}
$$

and, of course,

$$
Y=\beta_{0}+\beta_{1} \ln (X)+u
$$

- But these models are still considered linear regression models since they just involve a transformation of the dependent and/or independent variables.
- For example, in case I (linear-log), the model is linear in $\operatorname{In} X$ (which we can just relabel with another name, say Z).

I. Linear-log population regression function

$$
Y=\beta_{0}+\beta_{1} \ln (X)+u
$$

- To interpret β_{1} we calculate:

$$
\begin{aligned}
\Delta Y & \equiv \overbrace{E[Y \mid X=x+\Delta x]}^{\text {After }}-\overbrace{E[Y \mid X=x]}^{\text {Before }} \\
& =\beta_{0}+\beta_{1} \ln (x+\Delta x)-\left[\beta_{0}+\beta_{1} \ln (x)\right] \\
& =\beta_{1}(\ln (x+\Delta x)-\ln (x)) \\
& \approx \beta_{1} \frac{\Delta x}{x}(\text { for small } \Delta x \mid x)
\end{aligned}
$$

- A 1% increase in $X\left(\frac{\Delta x}{x}=0.01\right)$ is associated with $0.01 \beta_{1}$ change in Y.
- A 10% increase in $X\left(\frac{\Delta x}{x}=0.1\right)$ is associated with $0.1 \beta_{1}$ change in Y.
- Or, differentiating, $d Y=\beta_{1} \frac{1}{X} d X$.

Example: testscores vs. log(income)

- First define the new regressor: g lincome=ln(income)
- The model is now linear in ln(income), so the linear-log model can be estimated by OLS:

$$
\widehat{\text { Testscr }}=\underset{(3.8)}{557.8}+\underset{(1.4)}{36.42 \ln (\text { income })}
$$

- A 1% increase in income is associated with an increase in test scores of 0.36 points.
- Standard errors, confidence intervals, R^{2} - all the usual tools of regression apply here.
- How does this compare to the cubic model?

Cubic and linear-log models compared

In this sample, the linear-log and cubic specification are almost identical.

Stata commands

rename avginc income
g income2=income^2 //create square of income
g income3=income^3
reg testscr income income2 income3,r
predict testscr_c
label var testscr_c "fitted line - cubic"
reg testscr lincome,r
predict testscr_linlog
label var testscr_linlog "fitted value linear-log" twoway (scatter testscr income, sort) (line testscr_linlog income, sort lwidth(medthick) lpattern(longdash_dot)) (line testscr_c income, sort lwidth(thick)), legend(on
size(small) position(12) ring(0))

II. Log-linear population regression function

$$
\ln Y=\beta_{0}+\beta_{1} X+u
$$

- To interpret β_{1} we calculate

$$
\begin{aligned}
& \Delta \ln Y=E[\ln Y \mid X=x+\Delta x]-E[\ln Y \mid X=x] \\
= & \beta_{0}+\beta_{1}(x+\Delta x)-\left[\beta_{0}+\beta_{1} x\right] \\
= & \beta_{1} \Delta x
\end{aligned}
$$

- But

$$
\Delta \ln Y \approx \frac{\Delta Y}{Y} \Rightarrow \frac{\Delta Y}{Y} \approx \beta_{1} \Delta x
$$

- A unit increase in X is associated with a $100 \beta_{1} \%$ change in Y.
- Differentiating, $\frac{1}{Y} d Y=\beta_{1} d X$.

Example: log (testscore) vs. income

After generating \ln (testscore), and running the regression we get

$$
\widehat{\log } \widehat{(\text { Testscr })}=\underset{(0.0029)}{6.44}+\underset{(0.00018)}{0.0028} \text { income }
$$

When (average per capita) income increases by $\$ 1,000$ ((income $=1$), testscore increase by 0.28 percent.
When (average per capita) income increases by $\$ 10,000$ (Δ income $=10$), testscore increase by 2.8 percent.

III. Log-log population regression function

$$
\ln Y=\beta_{0}+\beta_{1} \ln (X)+u
$$

- To interpret β_{1} we calculate

$$
\begin{aligned}
& \Delta \ln Y=E[\ln Y \mid X=x+\Delta x]-E[\ln Y \mid X=x] \\
= & \beta_{0}+\beta_{1} \ln (x+\Delta x)-\left[\beta_{0}+\beta_{1} \ln x\right] \\
= & \beta_{1}(\ln (x+\Delta x)-\ln (x)) \\
\Rightarrow & \frac{\Delta Y}{Y} \approx \beta_{1} \frac{\Delta x}{x} \Rightarrow \underbrace{100 \frac{\Delta Y}{Y}}_{\% \text { change in } Y} \approx \beta_{1} \underbrace{100 \frac{\Delta x}{x}}_{\text {change in } X}
\end{aligned}
$$

- A 1% change in $X\left(\frac{\Delta x}{x}=0.01\right)$ is associated with a β_{1} percent change in Y.
- In the log-log specification, β_{1} has the interpretation of an elasticity.
- Differentiating, $\frac{1}{Y} d Y=\beta_{1} \frac{1}{X} d X \Longrightarrow \beta_{1}=\frac{\frac{1}{Y} d Y}{\frac{1}{X} d X}$.

Example: \log (testscore) vs. \log (income)

$$
\log \widehat{(\text { Testscr })}=\underset{(0.006)}{6.336}+\underset{(0.0021)}{0.0554 \ln (\text { income })}
$$

- A 1% increase in income is associated with an increase of 0.0554% in test scores.
- A 10% increase in income is associated with an increase of 0.554% in test scores.

Comparing fitted values across models

- Models having the same dependent variable can be easily compared.
- The fitted values here are fitted values of \log (testscr). The log-linear model is a straight line in the (Y, X) plane.

Comparing fitted values across models

- But if we want to compare models that have $\log (Y)$ and Y as dependent variable we need to be careful.
- Compute fitted values of Y for each model:

$$
\begin{aligned}
& \widehat{\ln (Y)}=\hat{\beta}_{0}+\hat{\beta}_{1} X \text { and define } \widehat{Y}=e^{\widehat{\ln (Y)}}=e^{\hat{\beta}_{0}+\hat{\beta}_{1} X} \\
& \widehat{\ln (Y)}=\hat{\beta}_{0}+\hat{\beta}_{1} \ln X \text { and define } \widehat{Y}=e^{\widehat{\ln (Y)}}=e^{\hat{\beta}_{0}+\hat{\beta}_{1} \ln X}
\end{aligned}
$$

and, of course,

$$
\widehat{Y}=\hat{\beta}_{0}+\hat{\beta}_{1} \ln X
$$

for which nothing has to be specially computed as it is the predicted value computed after the regress command.

Comparing fitted values of the three nonlinear models

Stata commands

g logtestscr=log(testscr)
reg logtestscr income,r predict testscr_loglin
label var testscr_loglin "fitted value log-linear"
reg logtestscr lincome,r
predict testscr_loglog
label var testscr_loglog "fitted value log-log" twoway (scatter logtestscr income, sort) (line testscr_loglin income, sort lwidth(thick)) (line testscr_loglog income, sort lpattern(dash) lwidth(thick)), legend(on size(small) position(12) ring(0)subtitle(y axis: $\log ($ testscr)))

Summary: Logarithmic transformations

- Three cases, differing in whether Y and/or X is transformed by taking logarithms.
- After creating the new variable(s) $\ln (Y)$ and/or $\ln (X)$, the regression is linear in the new variables and the coefficients can be estimated by OLS.
- Hypothesis tests and confidence intervals are implemented and interpreted as usual.
- The choice of specification should be guided by judgment (which interpretation makes the most sense in your application?), tests, and plotting predicted values.

Summary: Logarithmic transformations

- The interpretation of β_{1} differs from case to case.

Model	Change in X	Change in Y	In words
linear-log	$\frac{\Delta X}{X}$	ΔY	$\frac{1}{100} \times \beta_{1}=\frac{\text { Change in } Y}{1 \% \text { change in } X}$
log-linear	ΔX	$\frac{\Delta Y}{Y}$	$100 \times \beta_{1}=\frac{\% \text { Change in } Y}{1 \text { unit change in } X}$
log-log	$\frac{\Delta X}{X}$	$\frac{\Delta Y}{Y}$	$\beta_{1}=\frac{\% \text { Change in } Y}{1 \% \text { change in } X}$

Earning function estimation from Italian LFS

- We estimated "earning functions" - regressions of wages on education and other characteristics - using the level of wages as the dependent variable.
- The usual specification of an earning function differs in that:
- we use logs of wages instead of wages.
- we use a quadratic in age (or potential work experience).
- What are the implications of these modifications on the interpretation of the coefficient of education and of age?

The "old" specification

reg retric educ etam female Center South, robust

The new specification

Rate of return to education

- The coefficient of education in the new specification is the percentage change in wages associated with a one year change in education.
- It is a rate of return interpretation. In this sample, it is estimated to be 4.3%.
- Age (experience) has positive but diminishing (due to the negative quadratic coefficient) effects on wages.

Where are we?

(1) Nonlinear regression functions (SW 8.1)
(2) Polynomials (single regressor) (SW 8.2)
(3) Logarithms (single regressor) (SW 8.2)
(9) Interactions between variables (multiple regressors) (SW 8.3)
(1) Interaction between two binary variables.
(2) Interaction between a binary and a continuous variable.
(3) Interaction between two continuous variables.
(0) Application to California testscore data (SW 8.4)

Interaction between regressors

- Perhaps a class size reduction is more effective in some circumstances than in others...
- Perhaps smaller classes are more effective when there are many English learners needing individual attention.
- This means that, perhaps, $\frac{\Delta \text { Testscore }}{\Delta S T R}$ might depend on el_pct (\% of English learners).
- More generally,

$$
\frac{\Delta Y}{\Delta X_{1}} \text { might depend on } X_{2}
$$

- How to model such "interactions" between X_{1} and X_{2} ?
- We first consider binary X 's, then continuous X 's.

Interaction between two binary variables

$$
Y=\beta_{0}+\beta_{1} D_{1}+\beta_{2} D_{2}+u
$$

- D_{1}, D_{2} are binary (dummy) variables.
- β_{1} is the effect of changing $D_{1}=0$ to $D_{1}=1$. In this specification, this effect doesn't depend on the value of D_{2}.
- To allow the effect of changing D_{1} to depend on D_{2}, we include the "interaction term"

$$
D_{1} \times D_{2}
$$

as a regressor $\left(\left(D_{1} \times D_{2}\right)\right.$ represents the multiplication of D_{1} and $\left.D_{2}\right)$:
$Y=\beta_{0}+\beta_{1} D_{1}+\beta_{2} D_{2}+\beta_{3}\left(D_{1} \times D_{2}\right)+u \quad$ model with interaction

- To run the regression we need to generate a new regressor (maybe call it $D 1 X D 2$) equal to this multiplication.

Interpreting the coefficients

$$
Y=\beta_{0}+\beta_{1} D_{1}+\beta_{2} D_{2}+\beta_{3}\left(D_{1} \times D_{2}\right)+u
$$

- General rule is to compare Y "before and after" a change in D_{1}, holding D_{2} constant:

$$
\begin{align*}
& E\left(Y \mid D_{1}=0, D_{2}=d_{2}\right)=\beta_{0}+\beta_{2} d_{2} \tag{a}\\
& E\left(Y \mid D_{1}=1, D_{2}=d_{2}\right)=\beta_{0}+\beta_{1}+\beta_{2} d_{2}+\beta_{3} d_{2} \tag{b}
\end{align*}
$$

- Subtract (a) from (b):

$$
\Delta Y \equiv E\left(Y \mid D_{1}=1, D_{2}=d_{2}\right)-E\left(Y \mid D_{1}=0, D_{2}=d_{2}\right)=\beta_{1}+\beta_{3} d_{2}
$$

- The effect of D_{1} equals β_{1} when $D_{2}=0$ and $\beta_{1}+\beta_{3}$ when $D_{2}=1$.
- β_{3} is the increment to the effect of D_{1} on Y when $D_{2}=1$.
- The interaction term between the two variables allows for the effect of one variable on Y to depend on the value of the other variable.

Example: testscores, STR, English learners

- We define 2 dummy variables

$$
\operatorname{HiSTR}=\left\{\begin{array}{l}
0 \text { if } \mathrm{STR}<20 \\
1 \text { if } \mathrm{STR} \geq 20
\end{array} \quad H i E L=\left\{\begin{array}{c}
0 \text { if el_pct }<10 \\
1 \text { if el_pct } \geq 10
\end{array}\right.\right.
$$

- One way to do this in Stata is

$$
\begin{aligned}
\text { gen } H i S T R & =(S T R>=20) \\
\text { gen HiEL } & =(\text { el_pct }>=10)
\end{aligned}
$$

and the interaction term is just the multiplication of these two dummies.

Dummies and their interaction

Interpretation

$$
\widehat{\text { testscr }}=\underset{(1.4)}{664.1-\underset{(2.3)}{18.16} H i E L-\underset{(1.9)}{1.91} H i S T R-\underset{(3.1)}{3.49}(H i S T R \times H i E L) ~}
$$

- "Effect" of HiSTR when $\mathrm{HiEL}=0$ is -1.9 .
- "Effect" of HiSTR when HiEL $=1$ is $-1.9-3.5=-5.4$.
- Class size reduction is estimated to have a stronger effect when the percent of English learners is large.
- The interaction isn't statistically significant in this sample: $t=-3.49 / 3.1=-1.12$.

On dummy regressors and group ("cell") means

$$
\widehat{\text { testscr }}=\underset{(1.4)}{664.1-\underset{(2.3)}{18.16} H i E L-\underset{(1.9)}{1.91} H i S T R-\underset{(3.1)}{3.49}(H i S T R \times H i E L) ~}
$$

- The predicted values for each combination of the dummies is equal to the mean of testscore in the corresponding group (or "cell", e.g., $\mathrm{HiEL}=0$ and $\mathrm{HiSTR}=1$).
- Check it out! (differences due to rounding only)
. table Hiel Histr, c(mean testscr)

	Histr Hiel	
0	$\mathbf{6 6 4 . 1 4 3 3}$	$\mathbf{6 6 2 . 2 3 5 5}$
1	$\mathbf{6 4 5 . 9 8 0 3}$	$\mathbf{6 4 0 . 5 7 8 2}$

Interactions between continuous and binary variables

$$
Y=\beta_{0}+\beta_{1} D+\beta_{2} X+u
$$

where D is binary, X is continuous.

- As specified above, the effect on Y of X (holding constant D) is β_{2}, which does not depend on D .
- To allow the effect of X to depend on D , include the "interaction term" $D \times X$ as a regressor:

$$
Y=\beta_{0}+\beta_{1} D+\beta_{2} X+\beta_{3}(D \times X)+u
$$

Interpreting the coefficients

- General rule is to compare Y "before and after" a change in X :

$$
\begin{aligned}
& E(Y \mid D=d, X=x)=\beta_{0}+\beta_{1} d+\beta_{2} x+\beta_{3}(d \times x) \\
& E(Y \mid D=d, X=x+\Delta x)=\beta_{0}+\beta_{1} d+\beta_{2}(x+\Delta x)+\beta_{3}(d \times(x+\Delta x))
\end{aligned}
$$

- Subtracting the top from the bottom equation gives:

$$
\begin{aligned}
\Delta Y & \equiv E(Y \mid D=d, X=x+\Delta x)-E(Y \mid D=d, X=x) \\
& =\beta_{2} \Delta x+\beta_{3} d \Delta x \Rightarrow \frac{\Delta Y}{\Delta x}=\beta_{2}+\beta_{3} d
\end{aligned}
$$

- The effect of X depends on D (what we wanted)
- β_{3} is the increment to the effect of X on Y when $D=1$.
- The interaction between a binary and a continuous variable allows for the (marginal) effect of the continuous variable to vary with the group defined by the binary variable.

$$
Y=\beta_{0}+\beta_{1} D+\beta_{2} X+\beta_{3}(D \times X)+u
$$

- One way to understand what this interaction does is to realize that it allows for different regression lines for the two groups defined by the dummy variable.
- The population regression line when $D=0$ (for observations with $D_{i}=0$) is

$$
Y=\beta_{0}+\beta_{2} X+u
$$

and when $D=1$ (for observations with $D_{i}=1$) it is

$$
Y=\beta_{0}+\beta_{1}+\left(\beta_{2}+\beta_{3}\right) X+u
$$

- These are two regression lines with different slopes and intercepts.

Binary-continuous interactions: two regression lines

FIGURE 6.8 Regression Functions Using Binary and Continuous Variables				
 (a) Different intercepts, same slope (c) Same intercept, different slopes Interactions of binary variables and continuous variables can produce three different population regression functions: (a) $\beta_{0}+\beta_{1} X+\beta_{2} D$ allows for different intercepts but has the same slope; (b) $\beta_{0}+\beta_{1} X+\beta_{2} D+\beta_{3}(X \times D)$ allows for different intercepts and different slopes; and (c) $\beta_{0}+\beta_{1} X+\beta_{2}(X \times D)$ has the same intercept but allows for different slopes.				

Example: interacting STR and HiEL

```
. gen strXHiel=str*Hiel
. reg testscr str Hiel strXHiel,r
```

Linear regression

Number of obs	$=$	420
F (3, 416)	$=$	63.67
Prob $>$ F	$=$	0.0000
R-squared	$=$	0.3103
Root MSE	$=$	15.88

testscr	Coef.	Robust Std. Err.	t	P> \| $\mathrm{t} \mid$	[95\% Conf.	Interval]
str	-. 9684601	. 5891016	-1.64	0.101	-2.126447	. 1895268
Hiel	5.639141	19.51456	0.29	0.773	-32.72029	43.99857
strXHiel	-1.276613	. 9669194	-1.32	0.187	-3.17727	. 6240436
_cons	682.2458	11.86781	57.49	0.000	658.9175	705.5742

Example: interacting STR and HiEL

$$
\widehat{\text { testscr }}=\underset{(11.87)}{682.2}-\underset{(0.59)}{0.97} S T R+\underset{(19.52)}{5.6} H i E L-\underset{(0.97)}{1.28}(S T R \times H i E L)
$$

- Two regression lines: one for each HiSTR group. When $\operatorname{HiEL}=0$,

$$
\widehat{\text { testscr }}=682.2-0.97 S T R
$$

and when $H i E L=1$,

$$
\begin{aligned}
\widehat{\text { testscr }} & =682.2-0.97 S T R+5.6-1.28 S T R \\
& =687.8-2.25 S T R
\end{aligned}
$$

- Class size reduction is estimated to have a larger effect when the percent of English learners is large.

Testing hypotheses about the different regression lines

$$
\widehat{\text { testscr }}=\underset{(11.87)}{682.2}-\underset{(0.59)}{0.97} S T R+\underset{(19.52)}{5.6} H i E L-\underset{(0.97)}{1.28}(S T R \times H i E L)
$$

- There are various hypotheses of interest that can be tested:
(1) Regressions lines have the same slope
(2) Regressions lines have the same intercept
(3) Regressions line are identical

Hypothesis 1: The two regression lines have the same slope

$$
\widehat{\text { testscr }}=\underset{(11.87)}{682.2}-\underset{(0.59)}{0.97} S T R+\underset{(19.52)}{5.6} H i E L-\underset{(0.97)}{1.28}(S T R \times H i E L)
$$

- H_{0} : the coefficient on the interaction term $S T R \times H i E L$ is zero.
- This implies no difference in slopes.
- The t-stastistic is:

$$
t=\frac{-1.28}{0.97}=-1.32 \Rightarrow \text { do not reject } H_{0}
$$

This hypothesis is very important since it tests that there is no difference in the response to class size between the two groups of school districts (with high and low \% English learners).

Hypothesis 2: The two regression lines have the same intercept

$$
\widehat{\text { testscr }}=\underset{(11.87)}{682.2}-\underset{(0.59)}{0.97} S T R+\underset{(19.52)}{5.6} H i E L-\underset{(0.97)}{1.28}(S T R \times H i E L)
$$

- H_{0} : the coefficient on HiEL is zero.
- This implies no difference in intercepts.
- The t-statistics is,

$$
t=\frac{-5.6}{19.52}=0.29 \Rightarrow \text { do not reject } H_{0}
$$

Hypothesis 3: The two regression lines are identical

$$
\widehat{\text { testscr }}=\underset{(11.87)}{682.2}-\underset{(0.59)}{0.97} S T R+\underset{(19.52)}{5.6} H i E L-\underset{(0.97)}{1.28}(S T R \times H i E L)
$$

- H_{0} : the coefficients on HiEL $=0$ and on $S T R \times H i E L$ are both zero. This is a joint hypothesis (of two coefficients).
- H_{0} implies no differences in intercepts and slopes.
- The F-test is

$$
F(2,416)=89.94 \quad \text { Prob }>F=0.0000 \Rightarrow \text { reject } H_{0}!!!
$$

- Note that we reject the joint hypothesis but do not reject the individual hypotheses.
- This "strange" result can happen when there is high (but not perfect!) multicollinearity: i. e., high correlation between HiEL and $S T R \times \operatorname{HiEL}$ (0.99 in our case).

Interactions between two continuous variables

$$
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+u
$$

where X_{1} and X_{2} are continuous.

- As specified above, the effect on Y of X_{1} is β_{1}, which does not depend on X_{2}.
- And vice-versa: the effect of X_{2} is β_{2}, which does not depend on X_{1}.
- To allow the effect of X_{1} to depend on X_{2}, we include the "interaction term" $X_{1} \times X_{2}$ as a regressor:

$$
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3}\left(X_{1} \times X_{2}\right)+u
$$

Interpreting the coefficients

- General rule is to compare Y "before and after" a change in, say, X_{1} :

$$
\begin{gathered}
E\left(Y \mid X_{1}=x_{1}, X_{2}=x_{2}\right)=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3}\left(x_{1} \times x_{2}\right) \\
E\left(Y \mid X_{1}=x_{1}+\Delta x_{1}, x_{2}=x_{2}\right)=\beta_{0}+\beta_{1}\left(x_{1}+\Delta x_{1}\right)+\beta_{2} x_{2} \\
+\beta_{3}\left(\left(x_{1}+\Delta x_{1}\right) \times x_{2}\right)
\end{gathered}
$$

- Subtracting the first from the second equation gives:

$$
\begin{aligned}
\Delta Y & \equiv E\left(Y \mid X_{1}=x_{1}+\Delta x_{1}, X_{2}=x_{2}\right)-E\left(Y \mid X_{1}=x_{1}, X_{2}=x_{2}\right) \\
& =\beta_{1} \Delta x_{1}+\beta_{3} x_{2} \Delta x_{1} \Rightarrow \frac{\Delta Y}{\Delta x_{1}}=\beta_{1}+\beta_{3} x_{2}
\end{aligned}
$$

- The effect of X_{1} depends on X_{2} (what we wanted).
- β_{3} is the increment to the effect of X_{1} on Y from a unit change in X_{2}.

Example: interacting STR and EL_pct

```
gen strXel_pct=str*el_pct
. reg testscr str el_pct strXel_pct,r
```

Linear regression

Number of obs $=\mathbf{4 2 0}$
$\mathrm{F}(3,416)=155.05$
Prob $>\mathrm{F}=0.0000$
R -squared $=0.4264$
Root MSE $=14.482$

| testscr | Coef. | Robust
 Std. Err. | t | P>\|t| | [95\% Conf. | Interval] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| str | -1.117018 | . 5875135 | -1.90 | 0.058 | -2.271884 | . 0378468 |
| el_pct | -. 6729116 | . 3741231 | -1.80 | 0.073 | -1.408319 | . 0624958 |
| strXel_pct | . 0011618 | . 0185357 | 0.06 | 0.950 | -. 0352736 | . 0375971 |
| _cons | 686.3385 | 11.75935 | 58.37 | 0.000 | 663.2234 | 709.4537 |

Example: interacting STR and HiEL

$$
\widehat{\text { testscr }}=\underset{(11.8)}{686.3}-\underset{(0.59)}{1.12} S T R-\underset{(0.37)}{0.67} P c t E L+\underset{(0.019)}{0.0012}\left(S T R \times E I _p c t\right)
$$

- The estimated effect of class size reduction is nonlinear because the size of the effect itself depends on $E l _p c t$,

$$
\frac{\Delta t e s t s c o r e}{\Delta s t r}=-1.12+0.0012 E l_{-} p c t
$$

El_pct	$\frac{\Delta \text { testscore }}{\Delta \text { str }}$	
0	$-1.12+0.0012 \times 0=$	-1.12
10%	$-1.12+0.0012 \times 10=$	-1.108
11%	$-1.12+0.0012 \times 11=$	-1.1068
50%	$-1.12+0.0012 \times 50=$	-1.06

Increasing El_pct from 10% to 11% changes the marginal effect of STR by $-1.1068-(-1.108)=0.0012$ as expected!

Testing hypotheses

$$
\widehat{\text { testscr }}=\underset{(11.8)}{686.3}-\underset{(0.59)}{1.12} S T R-\underset{(0.37)}{0.67} P c t E L+\underset{(0.019)}{0.0012}\left(S T R \times E I _p c t\right),
$$

- Does population coefficient on STR $\times E l _p c t=0$?
- $t=0.0012 / 0.019=.06 \Rightarrow$ do not reject null at 5% level.
- Does population coefficient on $S T R=0$?
- $t=-1.12 / 0.59=-1.90 \Rightarrow$ do not reject null at 5% level
- Do the coefficients on both $S T R$ and $S T R \times E l _p c t=0$?

$$
F(2,416)=3.89 \quad \text { Prob }>F=0.0212 \Rightarrow \text { reject null at } 5 \% \text { level }!!
$$

As before, high but imperfect multicollinearity between $S T R$ and
$S T R \times E l _p c t$ (0.25 in this sample) can lead to this "non-intuitive" result.

Where are we?

(1) Nonlinear regression functions (SW 8.1)
(2) Polynomials (single regressor) (SW 8.2)
(3) Logarithms (single regressor) (SW 8.2)
(9) Interactions between variables (multiple regressors) (SW 8.3)
(6) Application to California testscore data (SW 8.4)

Application : Nonlinear Effects on Test Scores of the Student-Teacher Ratio

Focus on two questions:
(1) Does a reduction from, say, 25 to 20 have same effect as a reduction from, say, 20 to 15 ? More generally, are there nonlinear effects of class size reduction on test scores?
(2) Are small classes more effective when there are many English learners? More generally, are there interactions between EL_pct and STR?

Strategy for answering Question \#1 (different effect of STR at different STR levels?)

- Estimate linear and nonlinear functions of STR, holding constant relevant demographic variables:
- \% of English learner (EL_pct)
- Income (entered in logs because of previous work - recall the linear-log model).
- \% on free/subsidized lunch (mean_pct).
- Expenditures per pupil are not included in the regression so as to allow for increases in expenditures when decreasing STR.
- See whether adding the nonlinear terms makes an "economically important" quantitative difference.
- Test for whether the nonlinear terms are significant.

Regression results for question 1

Stata commands

g str_sq=str^2
g str_cu=str^3
gen Hiel $=\left(\mathrm{el} _\right.$pct $\left.>=10\right)$
g lincome $=\log$ (avginc)
label var el_pct "\% English learners"
label var meal_pct "\% Eligible for subsidized lunch"
label var lincome "Average district income (in logs)"
label var testscr "Test scores"
label var str "STR"
label var str_sq "STR^2"
label var str_cu "STR^3"
label var Hiel "Binary for \%English learners $>=10 \%$)"
label var str "Student-Teacher Ratio (STR)"

Stata commands

/////QUESTION 1

reg testscr str el_pct meal_pct,r
estimate store reg1
reg testscr str el_pct meal_pct lincome,r //adding income
estimate store reg2
reg testscr str str_sq str_cu el_pct meal_pct lincome,r
estimate store reg3
test str_sq str_cu
reg testscr str str_sq str_cu Hiel meal_pct lincome,r //dummy for \%
english learners
estimate store reg4
test str_sq str_cu
outreg2 [reg1 reg2 reg3 reg4] using table1.xls, auto(2) sortvar(str str_sq str_cu el_pct Hiel meal_pct lincome) label replace see

Testing significance of nonlinear terms

F-statistics and p-values on joint hypotheses

model	$\mathbf{H}_{0}:$	\mathbf{F}	p-value
reg 3	$S T R^{2}=S T R^{3}=0$	5.96	0.0028
reg 4	$S T R^{2}=S T R^{3}=0$	6.17	0.0023

- Nonlinear terms are significantly different from zero.
- But do they matter economically?

Economic significance of nonlinear terms

- After taking economic factors and nonlinearities into account, what is the estimated effect on test scores of reducing the student-teacher ratio by one student per teacher?
- Strong "diminishing returns": Cutting STR has a greater effect at lower student-teacher ratios.
- Not much difference in marginal effects between cols 3 and 4.
- But big difference with linear specifications (cols 1 and 2).

Model	STR	Effect of reducing STR by 1 student	
formula	value		
linear (col. 2)	all	$-0.73 \times(-1)$	0.73
nonlinear (col.3)	20	$65.3 \times(-1)-3.47 \times\left(19^{2}-20^{2}\right)+0.060 \times\left(19^{3}-20^{3}\right)$	1.57
nonlinear (col.3)	22	$65.3 \times(-1)-3.47 \times\left(21^{2}-22^{2}\right)+0.060 \times\left(21^{3}-22^{3}\right)$	0.69
nonlinear (col.4)	20	$64.3 \times(-1)-3.42 \times\left(19^{2}-20^{2}\right)+0.059 \times\left(19^{3}-20^{3}\right)$	1.761
nonlinear (col.4)	22	$64.3 \times(-1)-3.42 \times\left(21^{2}-22^{2}\right)+0.059 \times\left(21^{3}-22^{3}\right)$	0.927

Strategy for answering Question \#2 (differential effect of changing STR by \% English learners)

- Question 2: Are smaller classes more effective when there are many English learners? More generally, are there interactions between EL_pct and STR?
- Estimate linear and nonlinear functions of STR, interacted with \% English learners.
- If the specification is nonlinear (with STR, STR ${ }^{2}, \mathrm{STR}^{3}$), then you need to add interactions with all the nonlinear terms.
- We will use binary-continuous interactions by adding HiEL $\times S T R$, $H i E L \times S T R^{2}$ and $H i E L \times S T R^{3}$.

Regression results for question 2

Nonlinear regression models				
VARIABLES	(1) reg1 Test scores	(2) reg2 Test scores		(4) reg4 Test scores
Student-Teacher Ratio (STR)	$\begin{gathered} -0.734^{* * *} \\ (0.257) \end{gathered}$	$\begin{gathered} -0.772^{* * *} \\ (0.256) \end{gathered}$	$\begin{gathered} 64.34^{* * *} \\ (24.86) \end{gathered}$	$\begin{gathered} 83.70^{* * *} \\ (28.50) \end{gathered}$
STR^2			$\begin{gathered} -3.424^{* * *} \\ (1.250) \end{gathered}$	$\begin{gathered} -4.381^{* * *} \\ (1.441) \end{gathered}$
STR^3			$\begin{gathered} 0.0593^{* * *} \\ (0.0208) \end{gathered}$	$\begin{gathered} 0.0749^{* * *} \\ (0.0240) \end{gathered}$
\% English learners	$\begin{gathered} -0.176^{* * *} \\ (0.0337) \end{gathered}$			
Binary for \%English learners >= 10\%		$\begin{gathered} -5.791^{* * *} \\ (1.027) \end{gathered}$	$\begin{gathered} -5.474^{* * *} \\ (1.034) \end{gathered}$	$\begin{gathered} 816.1^{* *} \\ (327.7) \end{gathered}$
HiELxSTR				$\begin{gathered} -123.3^{* *} \\ (50.21) \end{gathered}$
HiELxSTR^2				$\begin{aligned} & 6.121^{* *} \\ & (2.542) \end{aligned}$
HiELxSTR^3				$\begin{aligned} & -0.101^{* *} \\ & (0.0425) \end{aligned}$
\% Eligible for subsidized lunch	$\begin{gathered} -0.398^{* * *} \\ (0.0332) \end{gathered}$	$\begin{gathered} -0.417^{* * *} \\ (0.0283) \end{gathered}$	$\begin{gathered} -0.420^{* * *} \\ (0.0285) \end{gathered}$	$\begin{gathered} -0.418^{* * *} \\ (0.0287) \end{gathered}$
Average district income (in logs)	$\begin{gathered} 11.57^{* * *} \\ (1.819) \end{gathered}$	$\begin{gathered} 11.82 * * * \\ (1.775) \end{gathered}$	$\begin{gathered} 11.75 * * * \\ (1.771) \end{gathered}$	$\begin{gathered} 11.80^{* * *} \\ (1.778) \end{gathered}$
Constant	$\begin{gathered} 658.6^{* * *} \\ (8.642) \end{gathered}$	$\begin{gathered} 659.4^{* * *} \\ (8.421) \end{gathered}$	$\begin{gathered} 252.0 \\ (163.6) \end{gathered}$	$\begin{gathered} 122.3 \\ (185.5) \end{gathered}$
Observations	420	420	420	420
R-squared	0.796	0.797	0.801	0.803

Tests of hypotheses

F-statistics and p-values on joint hypotheses for model 4

$\mathbf{H}_{0}:$	F	p-value
$H i E L \times S T R=H i E L \times S T R S T R^{2}=H i E L \times S T R S T R^{3}=0$	2.69	0.046
All coefficients involving STR $(6$ coeffs. $)$	4.96	0.0001
$S^{2} R^{2}=S T R^{3}=0$	5.81	0.0033

- Interactions of STR with HiEl are significantly different from zero at the 5% (but not 1%) significance level.
- But do they matter economically?

Economic significance of interaction terms

- Use model 4 to compute change in expected testscore when STR is reduced by one student at $\mathrm{STR}=20$ for schools with a high $(\geq 10 \%) \%$ of English learners (HiEL $=1$) and for schools with a low percentage ($H i E L=0$).
- The marginal effect of STR is not very different between the two groups of schools (1.7 and 1.56).

Model	STR	Effect of reducing STR by 1 student				
		formula				value
Hiel=0	20	$83.7 \times(-1)-4.381 \times\left(19^{2}-20^{2}\right)+0.0749 \times\left(19^{3}-20^{3}\right)$	1.6981			
Hiel=1	20	1.6981 (effect when Hiel $=0)-123.3 \times(-1)+6.12 \times$ 	$\left(19^{2}-20^{2}\right)-0.101 \times\left(19^{3}-20^{3}\right)$			

Two regressions: low and high \% of English learners (model 4)

FIGURE 6.11 Regression Functions for Districts with High and Low Percentages of English Learners
Districts with low percentages of English learn-
ers (HiEL $=0$) are shown by gray dots and dis- score

Summary of the empirical application

- The empirical analysis tried to provide answers to the following questions:
- Does the effect on test scores of reducing STR depends on the value of STR, after controlling for the observables?
- After controlling for economic background, there is evidence of a nonlinear effect on test scores of the student-teacher ratio. This effect is statistically significant at the 1% level (the coefficients on STR ${ }^{2}$ and STR ${ }^{2}$ are always significant at the 1% level).
- Does the effect on test scores of reducing STR depends on the \% of English learners, after controlling for the observables?
- After controlling for economic background, whether there are many or few English learners in the district does not have a substantial influence on the effect on final test scores of a change in the student-teacher ratio. Although statistically significant in the nonlinear specifications, the effect is minimal in the region of STR comprising most of the data.

Summary of the empirical application

- After taking economic factors and nonlinearities into account, what is the estimated effect on test scores of reducing the student-teacher ratio by one student per teacher?
- In the linear specification, this effect does not depend on the student-teacher ratio itself, and the estimated effect of this reduction is to improve test scores by 0.73 points.
- In the nonlinear specifications, this effect depends on the value of the student-teacher ratio. If the district currently has a STR of 20, then cutting it to 19 has an estimated effect, based on regression (3) in the first table, of improving test scores by 1.57 points, while based on regression (4) the estimate is 1.76 points. If the district currently has a STR student-teacher ratio of 22 , then cutting it to 21 has sharply more modest effect: 0.69 and 0.93 points, respectively. The estimates from the nonlinear specifications suggest that cutting the student-teacher ratio has a greater effect if this ratio is already small.

Summary: Nonlinear Regression Functions

- Using functions of the independent variables such as $\ln (X)$ or $X_{1} \times X_{2}$, allows recasting a large family of nonlinear regression functions as multiple regression.
- Estimation and inference proceeds in the same way as in the linear multiple regression model.
- Interpretation of the coefficients is model-specific, but the general rule is to compute the change in Y "before and after" a change in X .
- Many nonlinear specifications are possible, so you must use judgment:
- What nonlinear effect you want to analyze?
- What makes sense in your application?

